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1 Introduction

Great progress has been achieved in the past few years in precision studies of N = 4

supersymmetric Yang-Mills (SYM) theory and of the dual string theory on AdS5 × S5 [1–

3]. The problem of finding the exact anomalous scaling dimensions of local operators has

been recast into that of diagonalizing a long-range spin chain model, which — assuming

integrability — can be solved for asymptotically long operators by the Bethe ansatz [4–8].1

The most obvious remaining problem is the understanding of wrapping interactions, which

affect short operators at lower loop orders [10, 11].

Beyond that, one would want to go over and obtain all loop results for three-point cor-

relation functions and more generally n-point correlators of local gauge invariant operators.

In the case of three-point correlators, they are well understood when all three operators

1For reviews see [9].
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are chiral primaries (1/2 BPS operators) still from the early days of the AdS/CFT corre-

spondence [12]. These three-point functions are protected from radiative corrections and

are given precisely by the free field theory approximation. The case of four-point functions

is much more complicated, as they are subject to quantum corrections [13–20], while very

little is known about higher-point functions.

The lack of quantum corrections to the two-point and three-point functions of chiral

primary operators can be attributed to the fact that all the operators in the correlation

function share a number of common supersymmetries. A single operator is annihilated

by 24 supercharges: When the operator is located the origin, xµ = 0, these are all of the

superconformal generators (denoted as S) and half of the Poincaré supercharges (denoted

as Q). At other space-time positions these are 24 other combinations of these supercharges.

The most general combination of three operators of this type at arbitrary space-time posi-

tions will still preserve eight supercharges,2 since each breaks only eight. Four operators,

on the other hand, will generically not share any supersymmetries, which is exactly when

radiative corrections start to occur.

The object of this paper is to find families of operators which share more supercharges

than generic 1/2 BPS operators. One may hope that the correlator of four or more such

operators, who share a number of supercharges, will be simpler than that of n-point cor-

rellators of generic 1/2 BPS operators. This is indeed true in the two examples of families

of operators we present.

A trivial example is the case of operators all preserving the same super-Poincaré gener-

ators. If we consider one of the complex scalar fields of the N = 4 supersymmetry multiplet

Z = Φ5 + iΦ6 and build operators out of it, then

〈
TrZJ1(x1) TrZJ2(x2) · · · TrZJn(xn)

〉
= 0 . (1.1)

This is obvious since they all carry positive charge under a U(1) subgroup of the R-

symmetry group. But a similar statement is almost true also if there was only N = 1

supersymmetry and no R-charge. In that case chiral primary operators form a ring and

do not interact with each other. Their classical n-point function vanishes and they only

receive divergent quantum corrections due to instantons. Our examples will share many

features with these chiral rings.

In the other examples we present in this paper, the choice of operator is dependent

on its spatial position. At different locations the operators will be made of different linear

combinations of the scalar fields.

The way we realize this is by taking local operators of the form

Tr [uI(x)ΦI(x)]J , (1.2)

with uI(x) complex six-vectors. These operators are 1/2 BPS if uI(x)uI(x) = 0 and

furthermore, suitable choices of the uI(x) gives operators that share some conserved su-

percharges irrespective of the position xµ in some submanifold of space. In the following

2Note that they may break all the Q’s and preserve only S’s, which is not considered a supersymmetric

configuration, but by our counting it would be.
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two sections we give two examples of such constructions. The first example in section 2

allows the operators to be at arbitrary points xµ ∈ R
4 and they involve all six real scalars

of N = 4 SYM. The second example turns on only three of the scalars and the operators

are restricted to xµ ∈ R
2 in space-time.

We study the operators in a variety of ways. After presenting each example we show

the supercharges that are preserved by the relevant operators. We then study how the

symmetry generators of PSU(2, 2|4) act on the operators. In both cases there are linear

combinations of symmetry generators whose action on the operators is particularly simple,

these generators arise naturally in topologically twisted versions of N = 4 SYM. In the

examples we consider the topological twisting involves conformal generators and not merely

the Poincaré group. We will not study the topological twistings in detail, but we expect that

a lot of the features that we point out can be proven by use of topological gauge theories.

We then concentrate on perturbative calculations of specific n-point functions of the

operators we constructed. Using previously found results for the four-point function of

generic chiral primary operators we can immediately show that for our operators there are

no perturbative corrections. In a companion paper [21] we develop a simple formula for the

one-loop correction to all n-point functions of chiral primary operators. In that paper we

use this formula to evaluate some five-point functions and a six-point function at one loop.

Here we show that when concentrating on our special operators, these one-loop quantum

corrections vanish.

In the next two sections we study the details of the two constructions, relegating more

technical details of the supersymmetry algebra to appendices. We conclude in section 4

with a summary of our results and an extensive discussion of possible generalizations and

uses of these ideas.

2 Example I: 1/16 BPS n-point functions on R4

For our first example we take the six real scalars of N = 4 SYM theory Φ1, . . . ,Φ6 and at

an arbitrary point xµ ∈ R
4 define the field

C(x) = 2ixµΦµ(x) + i
(
1 − (xµ)2

)
Φ5(x) +

(
1 + (xµ)2

)
Φ6(x) , (2.1)

note that this corresponds to the six-vector in (1.2)

uI(x) =
(
2ix1 , 2ix2 , 2ix3 , 2ix4 , i(1 − (xµ)2) , 1 + (xµ)2

)
, (2.2)

which indeed satisfies u(x)2 = 0. Using C(x) we can then build 1/2 BPS gauge invariant

local operators

Tr C(x)J . (2.3)

In the definition of C we assigned to four of the six scalars a Lorentz index µ, which is

the first indication that some topological twisting is involved in the construction. Note

that the different terms appearing in the definition have varying scaling dimensions, which

could be fixed by adding appropriate powers of an arbitrary length-scale. For simplicity we

set this dimensionful constant to unity. The field C was considered in the past in [22, 23],
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for somewhat different motivations. We present our point of view on these operators and

will rely on some of the results of [22] below.

When considering the gauge theory on S4 these operators can also be written in a

compact form. Representing the sphere in flat R
5 we have

C(x) = iΦm(x)xm + Φ6(x) , m = 1, · · · , 5 , (xm)2 = 1 . (2.4)

We may also write the sphere as the base of the light-cone in R
5,1 and now

C(x) ∝ xiΦi(x) , (2.5)

with i = 1, . . . , 6 and in the sixth direction a (−i) is included.

2.1 Supersymmetry

We wish to calculate now the supercharges that are preserved by the field C at an arbitrary

point in space. A compact way of writing the general variation of a scalar Φi under both

the Poincaré and conformal supercharges is as

δΦi = ψ̄ρi γ5 ǫ , ǫ = ǫ0 + γµx
µǫ1 . (2.6)

Here ψ is the gluino which transforms in the spinor representation of the Lorentz and

SO(6) R-symmetry groups, ρi are the SO(6) gamma matrices, while γµ are those of the

spatial SO(4) and we take them to commute with each-other. ǫ0 and ǫ1 are constant 16-

component spinors which are the parameters for the super-Poincaré and superconformal

transformations respectively. Our notations and details of the superconformal algebra are

listed in appendix A.

Applying this to our local field C(x) of (2.1) gives

δC(x) = ψ̄
(
2ixµρµγ5 + i(1 − (xµ)2)ρ5γ5 + (1 + (xµ)2)ρ6γ5

)
(ǫ0 + γµx

µǫ1) . (2.7)

Expanding and separating into terms with different x dependences gives among others,

the equations

(ρ6 + iρ5)ǫ0 = 0 , (ρ6 − iρ5)ǫ1 = 0 , iρµǫ0 + ρ6γµǫ1 = 0 . (2.8)

All the other equations are automatically solved once we impose these conditions, which

are also not independent. The first two are a consequence of the last ones, which can be

rewritten as

γ1ρ1ǫ0 = γ2ρ2ǫ0 = γ3ρ3ǫ0 = γ4ρ4ǫ0 = iρ6ǫ1 . (2.9)

Since ǫ0 and ǫ1 arise from chiral spinors in 10-dimensions,3 this automatically sets the

correct relation between the last two matrices ρ5 and ρ6 acting on it, just as the first

equation in (2.8). Then ǫ1 is completely defined in terms on ǫ0.

The above conditions on ǫ0 can be rearranged as

γµνǫ0 = −ρµνǫ0 , µ, ν = 1, · · · , 4 . (2.10)

3In our conventions Γ10ǫ0 = ǫ0 and Γ10ǫ1 = −ǫ1 with Γ10 = iγ1γ2γ3γ4ρ1ρ2ρ3ρ4ρ5ρ6.

– 4 –



J
H
E
P
0
4
(
2
0
0
9
)
0
5
2

Now note that γµν are the generators of the Lorentz group in the spinor representation

while ρµν are six out of the 15 generators of the R-symmetry group, also in a spinor

representation. This equation suggests taking the diagonal sum of the two groups and

imposing that ǫ0 is a singlet under the diagonal group.

ǫ0 is the sum of a chiral spinor ǫ+ α
0A transforming in the (2,1,4) representation of

SU(2)L × SU(2)R × SU(4) and an anti-chiral spinor ǫ− α̇A
0 in the (1,2, 4̄) representation.

The above equation suggests to break the R-symmetry also to SU(2)A ×SU(2)B , such that

the spinor is decomposed as 4 → (2,1)⊕(1,2). We will use dotted lowercase roman indices

for SU(2)A and undotted ones for SU(2)B .

Under this decomposition the most general supercharge is generated by

ǫ+α
0 a Q

a
α + ǫ̇+ αȧ

0 Q̇αȧ − ǫ−1 α̇aS̄
α̇a − ǫ̇− ȧ

1 α̇
˙̄Sα̇
ȧ + ǫ+a

1αS
α
a + ǫ− α̇a

0 Q̄α̇a − ǫ̇+1 αȧṠ
αȧ − ǫ̇− α̇

0 ȧ
˙̄Qȧ
α̇ . (2.11)

Details are given in appendix B.

We may now view the above equation (2.10) as relating SU(2)L with SU(2)B and

SU(2)R with SU(2)A, so we need to consider only the spinors with either both dotted or

both undotted space-time and R-symmetry indices. Furthermore, the requirement that

they are a singlet of the diagonal group means that they can be written as

ǫ+α
0a = δα

a ǫ
+
0 , ǫ̇− α̇

0ȧ = δα̇
ȧ ǫ̇

−
0 , (2.12)

where ǫ−0 and ǫ̇−0 will serve as the two parameters of the unbroken supersymmetries.

ǫ1 can now be determined through the equation iρ6ǫ1 = γ1ρ1ǫ0. The generator ρ16

changes a dotted index into an undotted one, as does the single gamma matrix γ1. In

our notations in appendix A the gamma matrix with lower indices is γ1
α̇α = iτ1 and in

appendix B one finds that (ρ51 + iρ61) aȧ = −iτ1, so

ǫ+a
1α = τ1

αα̇τ
1 aȧǫ̇− α̇

0ȧ = δa
αǫ̇0

− , ǫ̇− ȧ
1α̇ = τ1

αα̇τ
1 aȧǫ+ α

0a = δȧ
α̇ ǫ

+
0 . (2.13)

Plugging this into (2.11) we find that the supercharges that annihilate all of the operators

C, regardless of their positions, are

Q+ = δα
a Q

a
α − δȧ

α̇
˙̄Sα̇
ȧ , Q− = δα̇

ȧ
˙̄Qȧ
α̇ − δa

α S
α
a . (2.14)

While C at a specific position preserves 24 supercharges, like any other chiral field, the

fields C all share two supercharges irrespective of their positions. In special cases, when

the positions are not totally generic there will be enhanced supersymmetry:

• Clearly at two different points C(x1) and C(x2) share sixteen supercharges.

• At three different points operators built out of C(xi) share only eight supercharges,

which is the same as for generic three 1/2 BPS local operators. Furthermore, any

three operators define a line or a circle on R
4. If we consider any number of operators

made of the Cs at arbitrary points along the line/circle they do not break any more

of the supersymmetries and still preserve 1/4 of the supercharges.
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• Likewise considering C at four points, or at any number of points on an S2 or an R
2

subspace, will lead to four preserved supercharges.

• Five different operators at generic positions are already the general case and preserve

only two supercharges.

2.2 Twisted symmetry

We have seen that operators built out of the field C are all invariant under two supercharges

Q±. Here we address how they transform under the remaining symmetry generators.

Some of the symmetry involved in the construction of C is apparent already on a

quick inspection of (2.1). We assigned to four of the scalar fields Lorentz indices on R
4, or

in the construction based on the light cone (2.5), we assigned a Lorentz index to all six.

This suggests that C will transform covariantly when combining R-symmetry rotations and

Poincaré and conformal transformations.

Indeed in section 2.1 we saw that the supercharges that annihilate C are singlets of a

diagonal subgroup of the SO(5, 1) conformal group and the SO(6) R-symmetry group.4 A

simple way of finding the twisted symmetry is to take the anti-commutators of Q± with the

other supercharges. As is shown in appendix B, this leads to the combinations of bosonic

symmetries (B.13)

P̂µ = Pµ +R5µ + iR6µ ,

Ĵµν = Jµν +Rµν ,

D̂ = D + iR56 ,

K̂µ = Kµ +R5µ − iR6µ .

(2.15)

Our construction therefore involves an identification of the R-symmetry group and the

space-time group, which is the way one obtains topological theories out of theories with

extended supersymmetries. Usually these constructions twist an SU(2) in space-time by an

SU(2) R-symmetry. Here the twist involves also the conformal generators and as we shall

see our other example in section 3 is also associated to topological twistings of a subgroup

of the conformal group.

In (A.11), (A.12) the action of the bosonic symmetry generators on scalar fields is

written out. From that we can derive the action of the combined generators in (2.15) on

our field C, incorporating the explicit space-time dependence

P̂µ C = ∂µC ,

Ĵµν C = (xµ∂ν − xν∂µ)C ,

D̂ C = xµ∂µC ,

K̂µ C = (2xµx
ν∂ν − x2∂µ)C .

(2.16)

4These are not the same groups, of course, but both are certain real subgroups of SL(4, C). We are

working mostly at the level of the algebra and are therefore not affected much by this. A more careful

treatments is given in [22] where it is argued that the R-symmetry group should really be also SO(5, 1).

– 6 –
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Therefore C transforms as a dimension-zero scalar of this twisted conformal group. Indeed

its tree-level two-point function is given by

〈C(x1)C(x2)〉0 =
uI(x1) · uI(x2)

(2π)2 (x1 − x2)2
=

1

2π2
, (2.17)

suppressing the gauge group indices.

The fact that the symmetry generators arise as anti-commutators with Q± (B.13)

allows us to prove that the n-point function is position independent. Consider the correlator

〈
Tr CJ1(x1) Tr CJ2(x2) · · · Tr CJn(xn)

〉
. (2.18)

We use the fact that P̂µ =
{
Q+, Qµ

}
, that Q+ annihilates all C’s and the Ward-Takahashi

identity associated to the symmetry generator Q+ to derive

∂

∂ xµ
1

〈
Tr CJ1(x1) Tr CJ2(x2) · · · Tr CJn(xn)

〉

= Q+
〈
J1Tr

[{
Qµ, C

}
CJ1−1(x1)

]
Tr CJ2(x2) · · · Tr CJn(xn)

〉
= 0 .

(2.19)

This statement is exact regardless of any quantum corrections (including non-

perturbative ones).

Furthermore, it was proven in [22] that the action of N = 4 SYM theory when restricted

to the zero instanton sector is Q±-exact, i.e. Spert =
{
Q±, Ψ±

}
with some Ψ±. This implies

that the n-point function receives no perturbative corrections5

∂

∂ g2
YM

〈
Tr CJ1(x1) Tr CJ2(x2) · · · Tr CJn(xn)

〉
pert

∝ Q+
〈
Ψ± Tr CJ1(x1) Tr CJ2(x2) · · · Tr CJn(xn)

〉
pert

= 0 .

(2.20)

These results are very reminiscent of those for operators in the chiral ring of theories

with N = 1 supersymmetry. There one can further use cluster decomposition to prove

that the n-point function vanishes perturbatively and receives contributions only from the

Veneziano-Yankielowicz superpotential.

In our case the theory is conformal, so there is no cluster decomposition. The n-point

function is not zero perturbatively, but given by tree-level contractions, as is discussed in

the next subsection. We have not evaluated the instanton corrections.

In addition to the two supercharges annihilating the field C, and the fifteen symmetry

generators that act on it covariantly (2.15), there are also fifteen more fermionic generators

under which it transforms covariantly (B.12). They are given by the sum of the two

off-diagonal blocks in (B.2). Together with the bosonic generators (2.15) they form the

superalgebra Q(4).

5This is true when suitably normalizing the operators to absorb the powers of gYM coming from the free

propagators.
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2.3 Explicit perturbative calculations

As argued already in the last section, the n-point functions of operators made of powers

of C 〈
TrCJ1(x1)TrCJ2(x2) . . .TrCJn(xn)

〉
, (2.21)

receive no radiative corrections in perturbation theory and may thus be called “superpro-

tected”. This is a property known to be true for two-pint and three-point functions of all

chiral primary operators, the novelty here is that it extends to n-point functions of the

special chiral primary operators made of the field C.

The argument given in the preceding section for the vanishing of all perturbative

corrections to the n-point function is based on the proof of [22] that the action is Q±

exact. We want to back up this elegant formal argument through explicit computations of

the first quantum correction to all n-point functions and all the perturbative corrections

to the four-point function of these operators (all with the same J). These considerations

will also be of later use in section 3.

In [21] we derive a compact expression for the planar one-loop quantum correction to

all n-point functions of operators of the form

Ou
J(x) = Tr

[
uI ΦI(x)

]J
, (2.22)

where the uI are arbitrary complex six-component vectors obeying uI uI = 0. This makes

Ou
J a chiral primary.

The one-loop correction to the n-point function is written as a sum over all possible

choices of four of the operators, with labels i, j, k and l. One field from each of these

operators interacts through a combined four-point vertex Dijkl and the rest of the fields

of these four operators have to be contracted with all the other operators in a planar way

(on a disc, with these four operators on the boundary). This can be written as

〈
Ou1

J1
· · · Oun

Jn

〉
1-loop

=
∑

i,j,k,l

JiJjJkJl Dijkl

〈
Oui

Ji−1O
uj

Jj−1O
uk

Jk−1O
ul

Jl−1

∣∣∣
∏

p 6=i,j,k,l

O
up

Jp

〉

tree, disc

(2.23)

The effective interaction vertex D is6

D1234 =
λ

32π2
Φ(s, t)

(
2 [13][24] + (s− 1 − t)[14][23] + (t− 1 − s) [12][34]

)
, (2.24)

where [ij] are the tree level contractions (without gauge-group indices), while s and t are

the cross-ratios

[ij] ≡
1

(2π)2
ui

I · u
j
I

x2
ij

, s =
x2

12 x
2
34

x2
13 x

2
24

, t =
x2

14 x
2
23

x2
13 x

2
24

, xij ≡ xi − xj , (2.25)

and Φ(s, t) is the scalar box integral [24]

Φ(s, t) =
x2

13 x
2
24

π2

∫
d4x5

1

x2
15 x

2
25 x

2
35 x

2
45

. (2.26)

6For clarity we sometimes replace the general indices ijkl with 1234.
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One last thing to note, in equation (2.23) one should sum over three inequivalent orders of

the operators: ijkl, ikjl and iklj, since the tree level disc amplitudes with these orderings

are generically different. It makes some sense to combine all these terms together, since

D1234 + D1324 + D1243 = 0, which allows to simplify some expressions, but this is not

necessary for the current calculation. It will be important in section 3.

With this result it is easy to prove that there are no one-loop corrections to the n-

point function of operators made of the field C. In this case we have (2.2) that ui
I = uI(xi)

depends on the position xi. This gives the inner product ui
I · uj

I = 2x2
ij and hence the

free-field contractions are all constant

[ij] =
1

2π2
. (2.27)

Plugging into (2.24) we find that Dijkl = 0, so there are no one-loop corrections to any of

the n-point functions of our operators.

In the case of four-point functions, we can extend this to an all-loop statement, relying

on the results of Arutyunov, Dolan, Osborn and Sokatchev [18, 19].

Based on superconformal symmetry and additional dynamical input these authors

showed that the all-loop quantum corrections to the four-point amplitude of general chiral

primaries of weight J are of a factorized, universal form

〈
Ou1

J (x1)O
u2

J (x2)O
u3

J (x3)O
u4

J (x4)
〉
quant

= R(s, t;X ,Y,Z)FJ (s, t;X ,Y,Z;λ) , (2.28)

where X , Y and Z are the pair-wise contractions

X = [12][34] , Y = [13][24] , Z = [14][23] . (2.29)

The important ingredient in (2.28) is R, the universal polynomial prefactor which is inde-

pendent of J or λ. It is given by the simple combination

R = s (Y − X )(Z − X ) + t (Z − X )(Z − Y) + (Y − X )(Y − Z)

=
16

λΦ(s, t)
(YD1234 + XD1324 + ZD1243) .

(2.30)

Moreover the functions FJ are known up to two-loop order for J ≤ 4 [20].

Clearly in our case

X = Y = Z =
1

4π4
, (2.31)

so R = 0 and therefore there are no radiative corrections to the four-point functions.

3 Example II: 1/8 BPS n-point functions on R2

We now turn to the discussion of our second example for a superprotected operator. If we

restrict the operator C from section 2 to the (x1, x2) plane (i.e. x3 = x4 = 0) it is

C = 2ix1Φ1 + 2ix2Φ2 + i(1 − (xµ)2)Φ5 + (1 + (xµ)2)Φ6 . (3.1)
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These operators will share four supercharges, twice as many as the most general operators

on R
4. We present in this section another construction of local operators on this plane made

out of only three of the scalars Φ1, Φ2 and Φ3, which will also share four supercharges.

Using the complex coordinates w = x1 + ix2 and w̄ = x1 − ix2 define

Z = i(1 − w̄2)Φ1 + (1 + w̄2)Φ2 − 2iw̄Φ3 , (3.2)

which corresponds to the choice in (1.2)

uI(w̄) =
(
i(1 − w̄2) , 1 + w̄2 ,−2iw̄ , 0 , 0 , 0

)
. (3.3)

As before we use Z to construct gauge invariant local operators

Tr ZJ(w, w̄) , (3.4)

at arbitrary positions on R
2.

While the definition of Z is different from the restriction of C to generic points on R
2,

if we restrict both to a line, they are the same up to the choice of scalar fields. For real w,

for example, Z in (3.1) is the same as C (2.1) with (Φ1, Φ2, Φ3) → (Φ5, Φ6, −Φ1). Indeed

while generically all Cs share four supercharges, along a line or a circle they share eight.

A nice realization of the same operators Z shows up when considering three scalar

fields on S2. Using the indices i, j, k = 1, 2, 3 both for unit three-vectors and for the three

scalars, we may define the following scalar field

Zi = (δij − xixj)Φj + iεijkx
jΦk . (3.5)

We study operators built out of this field in appendix D, where we explain the spurious

superscript in Zi and how it is related to Z in (3.2).

3.1 Supersymmetry

Examining the invariance of these operators under supersymmetry leads to the equations

(
ρ− − w̄ρ3 − w̄2ρ+

) (
ǫ0 + (wγ− + w̄γ+)ǫ1

)
= 0 , (3.6)

where we defined ρ± = (ρ1 ± iρ2)/2 and γ± = (γ1 ± iγ2)/2.

Requiring that this is satisfied for all w and w̄ leads to the independent equations

ρ3ǫ0 − ρ−γ+ǫ1 = 0 , ρ+ǫ0 + ρ3γ+ǫ1 = 0 , γ−ǫ1 = 0 . (3.7)

We can isolate the following conditions on ǫ1

γ−ǫ1 = ρ3ρ+ǫ1 = 0 . (3.8)

As in section 2.1, it proves useful again to consider the breaking of the R-symmetry group

SO(6) → SU(2)A′ × SU(2)B′ , but in a different way than discussed there. For the case at

hand we take SU(2)A′ to rotate the first three scalars Φ1, Φ2 and Φ3. SU(2)B′ will rotate

the remaining three scalars, which do not appear in Z and therefore we will not find any
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constraints associate to it. Under this breaking, which is discussed in detail in appendix C,

the 4 of SO(6) is decomposed into the (2,2) of the broken group.7 The index A of SU(4)

is replaced by the pair ȧa, with the dotted and undotted indices representing SU(2)A′

and SU(2)B′ respectively. The anti-symmetric ρij with i, j = 1, 2, 3 are the generators of

SU(2)A′ and can be written in terms of Pauli matrices. In addition we consider the chiral

decomposition of the spinors under SU(2)L × SU(2)R with indices α and α̇ respectively.

Under this decomposition the chiral and anti-chiral parts of ǫ0 have the indices ǫ+α
0 ȧa and

ǫ− α̇ȧa
0 and of ǫ1 they are ǫ+ ȧa

1 α and ǫ−1 α̇ȧa. The most general supersymmetry transformation

is then generated by

ǫ+ α
0 ȧaQ

ȧa
α + ǫ− α̇ȧa

0 Q̄α̇ȧa + ǫ+ ȧa
1 α Sα

ȧa − ǫ−1 α̇ȧaS̄
α̇ȧa . (3.9)

The specific choice of gamma matrices in (A.5) is such that

γ+
αα̇ = iδ1αδ

2̇
α̇ , γ−αα̇ = iδ2αδ

1̇
α̇ , γ+α̇α = −iδα̇

1̇
δα
2 , γ−α̇α = −iδα̇

2̇
δα
1 . (3.10)

Likewise (C.4)

(ρ3+)ȧḃ = δȧ
1̇
δ2̇
ḃ
, (ρ3−)ȧḃ = −δȧ

2̇
δ1̇
ḃ
. (3.11)

The equation γ−ǫ1 = 0 means that for the chiral component, ǫ+ ȧa
1 α , the subscript α has to

be 2 and for the anti-chiral part α̇ = 1̇. The equation ρ3+ǫ1 = 0 means that the superscript

ȧ = 1̇, and as a subscript ȧ = 2̇. Therefore

ǫ+ ȧa
1 α = δ2αδ

ȧ
1̇
ǫ+ a , ǫ−1 α̇ȧa = δ1̇α̇δ

2̇
ȧǫ

−
a , (3.12)

with arbitrary ǫ+a and ǫ−a . Now we can use the first equation in (3.7) to solve for ǫ0

ǫ− α̇ȧa
0 = iδα̇

1̇
δȧ
2̇
ǫ+ a , ǫ+ α

0 ȧa = iδα
2 δ

1̇
ȧǫ

−
a , (3.13)

Using (3.9), this gives the four independent supersymmetry generators

Q+
a = Q̄1̇2̇a − iS2

1̇a
, Q−a = Q 1̇a

2 + iS̄1̇2̇a . (3.14)

Note that the supercharges mix S and Q generators of different chirality.

The supercharges should commute to symmetries of the operators, which are the ro-

tation in the transverse plane and SU(2)B′ rotations

{
Q+

a ,Q
− b
}

= −iδb
a(J

2
2 − J̄ 1̇

1̇
) − iT b

a. (3.15)

Indeed the trace part is the rotation in the (x3, x4) plane and the triplet of a and b are the

SU(2)B′ generators.

7The breaking in section 2.1 is such that 4 → (2,1) ⊕ (1,2).
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3.2 Perturbative calculation

We want to calculate n-point correlators of operators built out of the field Z
〈
TrZJ1(w1, w̄1) TrZJ2(w2, w̄2) · · · TrZJn(wn, w̄n)

〉
, (3.16)

with all n-points (wi, w̄i) lying in the plane.

At tree level we should consider all possible contractions of Z fields. Now using (3.3)

we have uI(w̄i) · uI(w̄j) = 2(w̄i − w̄j)
2. The free-field contractions are therefore given by

[12] ≡ 〈Z(w1, w̄1)Z(w2, w̄2)〉 =
1

2π2

w̄12

w12

, wij ≡ wi − wj , (3.17)

where as before we suppressed gauge indices.

This two-point function is equivalent to that of a (matrix valued) field in a two-

dimensional conformal field theory with conformal weights (1
2
,−1

2
). We discuss the transfor-

mation properties of the field Z under twisted conformal symmetries in the next subsection.

The operators TrZJ are chiral primary operators of N = 4 SYM, so the two and

three-point functions do not receive quantum corrections and are given by considering all

possible free-field contractions (3.17).

Unlike the case of the operators in section 2, for the operators made of the field Z on

R
2, we do not have a general proof for the vanishing of the quantum corrections. It may

be possible to show that the action is exact under the supersymmetries that annihilate Z,

which would prove this statement.

Instead we proceed here to study the correlation functions of these operators in special

cases. First we consider the four-point functions, based on the general results of [18, 19].

Then we turn to some specific examples of five and six-point functions of operators of low

dimension and show by explicit calculations performed in our companion paper [21] that

the one-loop correction vanishes.

The first interesting quantity is the four-point function of these operators. As dis-

cussed in section 2.3, the key ingredients that appear in this calculation are the pairwise

contractions (2.29)

X = [12][34] , Y = [13][24] , Z = [14][23] . (3.18)

The two other ingredients are the conformal invariant cross ratios (2.25), which may also

be expressed in terms of a complex number µ

s =
x2

12 x
2
34

x2
13 x

2
24

= µµ̄ , t =
x2

14 x
2
23

x2
13 x

2
24

= (1 − µ)(1 − µ̄) . (3.19)

Using these, the universal polynomial prefactor (2.30) of [18, 19] takes the factorized form

R = s (Y − X ) (Z − X ) + t (Z − X ) (Z − Y) + (Y − X ) (Y − Z)

=
(
µ (X − Z) + Z − Y

)(
µ̄ (X −Z) + Z − Y

)
. (3.20)

So far this expression does not assume our specific operators, it only uses the complex

representation of the cross-ratios (3.19).

– 12 –



J
H
E
P
0
4
(
2
0
0
9
)
0
5
2

In our case µ can be written explicitly as the cross ratio of the four points wi on the

complex plane8

µ =
w12 w34

w13 w24

(3.21)

We note now that for our special operators Z, the pair-wise contractions X , Y and Z

are related to the cross-ratios by

X

Y
=
µ̄

µ
,

Z

Y
=

1 − µ̄

1 − µ
. (3.22)

With this we find the ‘magical’ identity

µ (X − Z) + Z − Y = 0 , (3.23)

so

R = 0 , (3.24)

and therefore all the four-point functions do not receive any quantum corrections in per-

turbation theory!

For correlation functions beyond the four-point function we do not have general results.

We did calculate, though, several five and six-point functions at one-loop order and found

that the quantum corrections vanish, suggesting that this might be a general property of

all n-point functions.

The calculation is done by using the results of [21], where the one loop correction to

the n-point function of chiral primary operators is written as a sum of insertions of an

effective four-scalar vertex Dijkl into tree-level disc amplitudes (2.24).

Using the complex cross-ratio µ, the function D1234 can be written as

D1234 =
λ

32π2
Φ(s, t)

(
2 [13][24] − (2 − µ− µ̄)[14][23] − (µ+ µ̄)[12][34]

)
. (3.25)

In our case we can furthermore use (3.22) to simplify this to

D1234 = −
λ

32π2
Φ(s, t)Y

(µ− µ̄)2

µ(1 − µ)
. (3.26)

Φ(s, t) is a transcendental function of the cross-ratios (2.26), and therefore the sum

over different Dijkl insertions in (2.23) is over different transcendental functions among

which there cannot be cancelations. The exception are terms with the same four vertices

but with a different ordering. It is always true that D1234 +D1324 +D1243 = 0, but using

the expression in (3.26) valid for our operators we find furthermore that D satisfies the

modular relations

D1234 = −
1

µ
D1324 = −

1

1 − µ
D1243 , (3.27)

8In general, any four points sit on a sphere or a plane in R
4 and defining µ by solving (3.19) will give

the complex conformal cross-ratio of these points with the natural complex-structure on that sphere/plane.
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Let us now examine the particular example of the minimal five-point function, that of

operators of dimension two, the general insertion formula (2.23) gives [21]

〈Ou1

2 Ou2

2 Ou3

2 Ou4

2 Ou5

2 〉1-loop = − 32
(
D1234

(
[13][52][45] + [15][53][24]

)
(3.28)

+D1324

(
[12][35][54] + [15][52][34

)

+D1243

(
[14][25][53] + [15][54][23]

)

+ cyclic permutations of (12345)
)
.

Using the modular property (3.27) allows us to simplify the three terms we have written

explicitly in (3.28), which add up to

D1234

(
[13][52][45] + [15][53][24] − µ

(
[12][35][54] + [15][52][34

)

− (1 − µ)
(
[14][25][53] + [15][54][23]

)) (3.29)

By an explicit calculation, plugging in the value of the tree-level contractions (3.17), we find

that this sum vanishes. Hence there are no one-loop correction to this five-point function.

Furthermore, in [21] several other examples of five-point functions of operators of total

dimension up to sixteen were calculated and it was shown that they can always be written

as a sum of six terms. One is proportional to (3.28) and the rest are proportional to R (3.20)

(with the five different choices of four points). Since these constituents vanish for operators

made solely of Z, the one-loop corrections to all these five-point functions vanish. If such

a decomposition of the five-point amplitude generalizes also for chiral primary operators of

higher dimension, it would then immediately imply the vanishing of the one-loop correction

to any five-point function made of Z.

We also computed in [21] one six-point function, that of six chiral primary operators of

dimension two. It is written again as a sum similar to (3.28) and by plugging in our choice of

operators, using the modular relation (3.27) we get a sum of fifteen terms similar to (3.29)

(but with eighteen terms instead of six and each made of four tree-level contractions, instead

of three). By direct calculation we found that this vanishes. It would be interesting to

understand higher-point functions, both as to their factorization into n-point function of

operators of dimension two, and to the vanishing of the analogs of (3.29). We leave this

for future explorations.

We would like to stress again that unlike the field C of section 2, the correlators of

operators made of Z are not constant, rather they involve the ratio of the anti-holomorphic

and holomorphic distances between the points.

3.3 Twisted symmetry

It is clear that in addition to the four supersymmetries calculated in section 3.1, the field

Z is invariant under J34, the rotation that leaves the plane invariant, as well as under the

action of the three generators of the R-symmetry group that act on the three remaining

scalars Φ4, Φ5 and Φ6, which we dubbed SU(2)B′ .

Beyond that, being restricted to the plane, Z transforms in representations of SL(2,C),

of rigid conformal transformations on the plane generated by P1, P2, K1, K2, J12 and D.
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Likewise, since it involve Φ1, Φ2 and Φ3, Z can be classified in terms of the SU(2)A′ group

that rotates them, generated by R12, R23 and R31.

Consider the three generators of the holomorphic SL(2,R)

L1 =
1

2
(P1 − iP2) , L0 =

1

2
(D − iJ12) , L−1 =

1

2
(K1 + iK2) . (3.30)

These operators act on Z by

L1 Z = ∂wZ , L0 Z = w ∂wZ +
1

2
Z , L−1 Z = w2 ∂wZ + wZ . (3.31)

Z therefore transforms as a weight 1/2 primary field of this group.

Since some of the other symmetry generators do not close on Z, it will prove useful to

define two more fields made of the same three scalars

Y = −iw̄Φ1 + w̄Φ2 − iΦ3 , W = −iΦ1 + Φ2 . (3.32)

The transformation rules of Y and W under Li are identical to that of Z. This is clearly

the same behavior as for any of the scalar fields, since there is no explicit w dependence in

the definitions of Z, Y and W

The rest of the symmetry generators can be organized as

R+ = −i(R23 + iR31) , R0 = iR12 , R− = i(R23 − iR31) , (3.33)

L̄1 =
1

2
(P1 + iP2) , L̄0 =

1

2
(D + iJ12) , L̄−1 =

1

2
(K1 − iK2) , (3.34)

Their action on the fields Z, Y and W are not too simple and are given in the appendix,

see (C.11) (C.10).

A natural thing to try is to take the linear combination of L̄ and R. Consider

for example

L̇1 = L̄1 +R+ , L̇0 = L̄0 +R0 , L̇−1 = L̄−1 +R− . (3.35)

Their action on Z is given by

L̇1 Z = ∂w̄Z , L̇0 Z = w̄ ∂w̄Z −
1

2
Z , L̇−1 Z = w̄2 ∂w̄Z − w̄Z . (3.36)

Z therefore transforms as a weight −1/2 field of this twisted anti-holomorphic SL(2,R).

The action on Y and W is given in (C.13). Y has weight 1/2 and W has weight 3/2, but

they are not primaries, since there are additional terms in the action of L̇−1.

It will turn out that a different combination of the anti-holomorphic symmetry gener-

ators and rotations is related to supersymmetries preserved by the operators Z. These are

L̂1 = L̄1 +
1

2
R+ , L̂0 = L̄0 +

1

2
R0 , L̂−1 = L̄−1 +

1

2
R− . (3.37)

Note that because of the factor of 1/2 those generators do not close onto themselves, and

do not form an SL(2,R) algebra.
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The action of these operators on Z is

L̂1 Z = ∂w̄Z − Y , L̂0 Z = w̄ ∂w̄Z − w̄Y , L̂−1 Z = w̄2 ∂w̄Z − w̄2Y . (3.38)

Under this twisting Z has dimension zero, but has these extra terms proportional to Y in

the action of L̂. The actions on Y and W are given in (C.15), where Y has dimension 1/2

and W dimension one.

To see how these symmetry generators come about, consider the anti-commutators of

Q± with all the other supercharges which will generate some of the bosonic symmetries

of the theory. Most of these symmetries will map our operators to others, taking them

away from the (x1, x2) plane or turning on the three remaining scalars. But the following

combinations map our operators to themselves

{
Q+

a , iQ
1̇a

2 + S̄1̇2̇a
}

= 2
(
J2

2 + J̄ 1̇
1̇
+D

)
+ Ṫ 1̇

1̇
− Ṫ 2̇

2̇
= 2(D + iJ12 + iR12) = 4L̂0 ,

{
Q+

a ,−iQ
2̇a

2

}
= −2iP21̇ − Ṫ 2̇

1̇
= P1 + iP2 − i(R23 + iR31) = 2L̂1 ,

{
Q+

a ,−S̄
1̇1̇a
}

= 2iK 1̇2 + Ṫ 1̇
2̇

= K1 − iK2 + i(R23 − iR31) = 2L̂−1 . (3.39)

Similar expressions exist for Q−a giving the same combinations of symmetry generators on

the right-hand side. Note that these symmetries include both space-time generators and

R-rotations of SU(2)A′ and are the second twisting discussed above. Their action on the

fields Z, Y and W are given in (3.38) and (C.15).

These twisted symmetry generators can be used to find extra relations among the

n-point function of operators with TrZJ which are valid in the quantum theory.

It is instructive to consider the contractions of Z as well as Y and W (3.32) (again

suppressing the gauge group indices)

〈Z(w1, w̄1)Z(w2, w̄2)〉 =
1

2π2

w̄12

w12

, 〈Y (w1, w̄1)Y (w2, w̄2)〉 = −
1

4π2

1

w12 w̄12

,

〈Y (w1, w̄1)Z(w2, w̄2)〉 =
1

2π2

1

w12

, 〈W (w1, w̄1)Z(w2, w̄2)〉 =
1

2π2

1

w12 w̄12

,

〈W (w1, w̄1)Y (w2, w̄2)〉 = 0 , 〈W (w1, w̄1)W (w2, w̄2)〉 = 0 . (3.40)

Consider the action of Q+
a on the correlator of any number of TrZJ operators and one

arbitrary local operator O

Q+
a

〈
O TrZJ2 · · ·TrZJn · · ·

〉
=
〈
Q+

a O TrZJ2 · · ·TrZJn · · ·
〉

(3.41)

Q+
a commutes with all the Z’s and the overall expression vanishes, by a Ward-

Takahashi identity.

Now take O = 1
2J1

Q 2̇a
2 TrZJ1. Since we saw (3.39) that 2L̂1 =

{
Q+

a ,−iQ
2̇a

2

}
and it

commutes with the Z’s, we have

− iQ+
a O =

1

J1

L̂1TrZJ1 = Tr
[
(∂w̄Z − Y )ZJ1−1

]
. (3.42)

Thus we find the following relation for the four-point function with one Y insertion

〈
Tr [Y ZJ1−1] TrZJ2 TrZJ3 TrZJ4

〉
=

1

J1

∂w̄1

〈
TrZJ1 TrZJ2 TrZJ3 TrZJ4

〉
. (3.43)
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As we have proven in section 3.2, the four-point function on the right-hand side is given

by the free contractions of the different Z’s and from this we derived an exact expression

for the correlator on the left-hand side as well. Similar statements would hold for higher

n-point functions if indeed these are not renormalized either.

To illustrate this type of relation in a particularly simple example, for the two-point

function we know from (3.40) that

〈Z(w1, w̄1)Z(w2, w̄2)〉 =
1

2π2

w̄12

w12

, 〈Y (w1, w̄1)Z(w2, w̄2)〉 =
1

2π2

1

w12

, (3.44)

and indeed 〈Y (w1, w̄1)Z(w2, w̄2)〉 = ∂w̄1
〈Z(w1, w̄1)Z(w2, w̄2)〉 .

The twisted symmetry generators L̂i can be used to derive more such relations between

correlation functions.

4 Discussion

In this paper we introduced the notion of “superprotected n-point function”, the correlation

function of operators all sharing supersymmetries. We focused on two main examples: In

section 2 operators constructed of all six scalars and at general position in R
4, and in

section 3 operators constructed out of three real scalars and restricted to a plane.

The operators have explicit spatial dependence and in the example of section 2 this

renders their tree-level correlation functions space-independent. Thus these correlation

functions are given by a zero-dimensional Gaussian matrix model. Furthermore we provided

different evidence for the absence of perturbative corrections to these observables. The most

elegant argument is that given by de Medeiros et al. [22], who showed that the N = 4 action

is exact under the supersymmetries that annihilate these operators, up to instanton terms.

Beyond this somewhat formal argument we checked this cancellation using an explicit

expression for the one-loop correction to all n-point functions of chiral primary operators,

published in an accompanying paper [21]. In addition we relied on the general structure

of the four-point function of chiral primary operators [18, 19] which implies the all-loop

cancelation of quantum corrections, even including instantons [25].

The operators in section 3 have a different spatial dependance and consequently more

complicated correlation functions. The free contractions are those of a two-dimensional

CFT with matrix fields of dimension (1
2
,−1

2
). Again, we checked the quantum corrections

in a variety of ways, the all-loop corrections to all four point functions and the explicit

one-loop correction to some five-point functions and one six-point function. In all these

cases the quantum corrections vanished, leading one to believe that again these n-point

functions are given by this free theory.

There exists another class of n-point functions that do not receive quantum corrections,

the extremal correlators [26]. These correlation functions are such that the weights of the

operators allow only very simple Feynman diagrams to contribute and exclude quantum

corrections. Our constructions are based on a very different principle; the weights are

completely arbitrary, but the type of operator is correlated with its space-time position.

The simplicity is a consequence of the supersymmetry shared by all the operators.
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It would clearly be desirable to have rigorous proofs that none of the correlation func-

tions studied in this paper receive perturbative corrections. For the case discussed in

section 2, this is done in [22] by showing that the action is Q exact, up to instanton terms.

It would be interesting to try to show the same for the operators in section 3. Further-

more, since the proof applies only to the perturbative series, it suggests that there could

be instanton corrections to the n-point functions and perhaps they are also computable.

Another question we have not touched on is regarding the string duals of these n-

point functions. Four-point functions have been calculated in AdS5 × S5 [13, 14, 27]

and it is known that the result is also proportional to the universal polynomial prefactor

R(s, t;X ,Y,Z) (2.30) of [18, 19]. Hence the quantum corrections in string theory also

cancel for the four-point functions. It would still be nice to have explicit calculations for

our examples, since they most likely are much simpler than a generic four-point function

calculation (which is quite complicated). Is there some way to organize the calculation

which brings out the fact that the full result localizes to free graphs? Furthermore, would

it be possible to calculate in AdS higher-point functions for these operators?

Going beyond the specific examples studied in this paper, one could ask the same

question regarding any n-point function where all the operators share some supersymme-

tries. Are all such correlation functions protected? There are many examples where BPS

Wilson loop operators are [28–36]. Likewise the known examples of correlation functions

of local operators and Wilson loops sharing some supersymmetries are given by summing

free propagators [37–43]. One could also find Wilson loops that share supersymmetry with

the n-point functions discussed in this paper [23]. As another example, the slightly more

exotic surface operators [44] seem to have very simple correlation functions with Wilson

loops and local operators when they all share supersymmetry [45, 46].

In fact, another family of local operators that share supersymmetry can be derived from

taking infinitesimal Wilson loops. There are two known examples of families of Wilson loop

operators which all share some supercharges [47, 48]. While those papers concentrate on

the expectation value of a single Wilson loop, there is no impediment to take more than

one — that configuration is still supersymmetric. When shrinking all the Wilson loops

to small size, one ends up with local operators which can serve as another realization of

the ideas put forth in this paper. The Wilson loops are made by including special scalar

couplings in addition to the gauge connection. The resulting local operators will include

the field strength, derivatives and commutators of scalar fields, which can all be represented

in terms of some modified covariant derivative like

D̂µ = ∂µ − iAµ + Φµ ,

D̃µ = ∂µ − iAµ + Φ+
µνx

ν .
(4.1)

These correspond to the two examples, where the scalar fields get assigned space-time

indices of a vector and self-dual tensor in a natural way [47, 48].

In the case of the loops constructed by Zarembo [47], the expectation values are always

unity [49–51], and it is reasonable to expect that this would be true also in the limit.

The second example, that in [48] is more complicated and one would expect the n-point

function of the infinitesimal Wilson loops to be non-zero. In particular, when the loop is
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restricted to an S2 in space-time there is some evidence showing that they are equal to a

perturbative calculation in two-dimensional Yang-Mills theory [52, 53] (see also [54, 55]).

Are the correlation functions of the infinitesimal loops then given by the correlators of

single plaquette operators in two-dimensional Yang-Mils?

These examples, including the ones studied in this paper are surely not the only ones.

For local operators, as mentioned before, any three chiral primary operators will share

some supercharges. It is reasonable to expect that on the line (or circle) spanned by these

operators one could place more local operators that share the same supercharges as the

original three. Will all such objects have vanishing quantum corrections? It is possible that

the tools we used in section 3 would apply also there. In checking for the cancelation of the

one-loop corrections an important property was the way the interaction vertex depended on

the complex cross-ratio (3.27). For four operators on a line there is only one real cross-ratio,

so it is possible that similar relations will also hold.

Beyond a single line, one can ask whether there are other examples of families of

operators on submanifolds of space-time, like R
2 in our second example, that share some

supercharges, and whether they receive quantum corrections. One useful tool may be the

universal polynomial function R (2.30). In both of our examples it vanished, proving

that the four point functions do not get renormalized. One can therefore ask for which

collection of points, or submanifold of space-time and for which operators does R vanish. In

these cases will the operators necessarily share some supercharges? Under what conditions

would it be possible to add operators to make n-point functions with vanishing quantum

corrections, and is there a generalization of R to these cases (see also [21]).

As we touched on in the text, the supersymmetry shared by the families of operators

we constructed lead to some bosonic “twisted” symmetries that relate different correlation

functions to each-other. It would be interesting to understand the scope of these symmetries

and find all possible correlation functions of other operators, involving fermions, derivatives

and gauge fields and which are related to the ones we have calculated — and therefore are

also “superprotected”.

Our results advocate the point of view where one should not necessarily regard local

operators as the basic objects and n-point functions merely as their correlators. The n-

point functions may have more of an independent meaning. One example of this dual

point of view are classical geodesics in AdS space — they calculate the two-point functions

of dual operators. In particular, in all the examples that we studied we investigated the

amount of supersymmetry preserved by all the objects in the correlation function, not

each separately.

A very interesting spin-off would be to try to build upon our “superprotected” three-

point functions to understand the interaction of non-BPS operators. In the same way

that the spectrum of local operators is understood in terms of magnon excitations over a

supersymmetric ground state, one could put magnons on top of three long operators which

share supersymmetry and study their interactions. We find the operators in section 2

particularly promising candidates for the ground state, since their correlation functions

have trivial spatial dependence.
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A Notations and the superalgebra

This appendix summarizes our conventions for the N = 4 superconformal algebra

PSU(2, 2|4) following [56]. The two ways of breaking the R-symmetry group SU(4) →

SU(2) × SU(2) are then explained in the following appendices.

We denote by Jα
β, J̄ α̇

β̇
the generators of the SU(2)L × SU(2)R Lorentz group, and by

RA
B the 15 generators of the R-symmetry group SU(4). The remaining bosonic generators

are the translations Pαα̇, the special conformal transformations Kαα̇ and the dilatation D.

Finally the 32 fermionic generators are the Poincaré supersymmetries QA
α , Q̄α̇A and the

superconformal supersymmetries Sα
A, S̄α̇A.

The commutators of any generator G with Jα
β, J̄ α̇

β̇
and RA

B are canonically dictated

by the index structure

[
Jα

β ,Gγ

]
= δα

γ Gβ −
1

2
δα
βGγ ,

[
Jα

β ,G
γ
]

= −δγ
βG

α +
1

2
δα
βG

γ , (A.1)

[
J̄ α̇

β̇
,Gγ̇

]
= δα̇

γ̇ Gβ̇ −
1

2
δα̇
β̇
Gγ̇ ,

[
J̄ α̇

β̇
,Gγ̇

]
= −δγ̇

β̇
Gα̇ +

1

2
δα̇
β̇
Gγ̇ (A.2)

[
RA

B ,GC

]
= δA

CGB −
1

4
δA
BGC ,

[
RA

B ,G
C
]

= −δC
BGA +

1

4
δA
BG

C . (A.3)

while commutators with the dilatation operator D are given by
[
D ,G

]
= dim(G)G, where

dim(G) is the dimension of the generator G.

The remaining non-trivial commutators are

{
QA

α , Q̄α̇B

}
= δA

BPαα̇ ,
{
Sα

A , S̄
α̇B
}

= δB
AK

αα̇ ,
[
Kαα̇ , QA

β

]
= δα

β S̄
α̇A ,

[
Kαα̇ , Q̄β̇A

]
= δα̇

β̇
Sα

A ,

[
Pαα̇ , S

β
A

]
= −δβ

αQ̄α̇A ,
[
Pαα̇ , S̄

β̇A
]

= −δβ̇
α̇Q

A
α ,

{
QA

α , S
β
B

}
= δA

BJ
β
α + δβ

αR
A
B +

1

2
δA
Bδ

β
αD ,

{
Q̄α̇A , S̄

β̇B
}

= δB
A J̄

β̇
α̇ − δβ̇

α̇R
B
A +

1

2
δB
Aδ

β̇
α̇D ,

[
Kαα̇ , Pββ̇

]
= δα̇

β̇
Jα

β + δα
β J̄

α̇
β̇

+ δα
β δ

α̇
β̇
D .

(A.4)

So far we have written the algebra in spinor notations, but we find it useful also to

transform to vector notations. To that end we take the following choice of Euclidean
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gamma matrices for R
4, where τ i are the usual Pauli matrices

γi =

(
0 (σi)αα̇

(σ̄i)α̇α 0

)
=

(
0 iτ i

−iτ i 0

)
γ4 =

(
0 (σ4)αα̇

(σ̄4)α̇α 0

)
=

(
0 I

I 0

)
(A.5)

SU(2) indices can be raised and lowered by using the appropriate epsilon tensor, for

which we adopt the conventions

Gr = εrsGs , Gr = εrsG
s ; εrs =

(
0 1

−1 0

)
, εrs =

(
0 −1

1 0

)
. (A.6)

where the indices r, s belong to any SU(2) group. Indeed (σ̄µ)α̇α = ǫα̇β̇ ǫαβ (σµ)ββ̇ .

We note the contraction relations

(σµ)αα̇ (σ̄µ)β̇β = 2 δβ̇
α̇ δ

β
α Tr (σµσ̄ν) = 2 δµν . (A.7)

The gamma matrices with anti-symmetric indices are

σµν =
1

2
(σµσ̄ν − σν σ̄µ) , σ̄µν =

1

2
(σ̄µσν − σ̄νσµ) . (A.8)

We may now define

Pµ = Pαα̇ (σ̄µ)α̇α , Pα̇α =
1

2
(σµ)αα̇ Pµ ,

Kµ = K α̇α (σµ)αα̇ , K α̇α =
1

2
(σ̄µ)α̇αKµ ,

Jµν =
1

2

(
Jα

β σ
µν)α

β − J̄ α̇
β̇ (σ̄µν)β̇ α̇

)
.

(A.9)

Using the commutation relations (A.4) and contracting the relevant σµ and σ̄ν we get the

commutators in SO(4) language

[
Kµ, P ν

]
= 2 (Jµν + δµν D)

[
Jµν , P ρ

]
= δµρ P ν − δνρ Pµ ,

[
Jµν , Jρσ

]
= δµρ Jνσ − δνρ Jµσ + δµσ Jρν − δνσ Jρµ .

(A.10)

These commutation relations can be realized by the following definition of the action

of the symmetry generators on scalar fields

Pµ Φi = ∂µΦi ,

Jµν Φi = (xµ∂ν − xν∂µ)Φi ,

DΦi = (xµ∂µ + ∆)Φi ,

Kµ Φi = (2xµx
ν∂ν + 2∆xµ − x2∂µ)Φi .

(A.11)

Noting that to calculate the commutators the derivatives act on fields, and not directly on

the coordinates, one gets the commutation relations (A.10).
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The action of the R-symmetry generators on the scalar fields can be written as

Rij Φk = δk
i Φj − δk

j Φi , (A.12)

which gives the algebra

[
Rij , Rkl

]
= δikRjl − δjkRli + δilRkj − δjlRik , (A.13)

We choose specific notations for the R-symmetry generators in the following two appen-

dices, once we break SO(6) to SU(2)× SU(2) in the two ways appropriate for the different

local operators discussed in the text.

B Symmetry breaking for example I

The construction of the operators in section 2 involves an identification of the full SO(5, 1)

conformal group and the R-symmetry group. The supercharges, which transform in two bi-

spinor representations of those groups may be decomposed, after the identification, to two

adjoints and two singlets of the diagonal group. The supercharges preserved by the field C

are the singlets. The standard notations have the SO(4) Euclidean Lorentz group written

as SU(2)L × SU(2)R with the spinors in the (2,1) ⊕ (1,2) representations, labeled by the

indices α and α̇. Therefore, to describe the supersymmetry preserved by the operators on

R
4 it is useful to consider the breaking of the SU(4) R-symmetry group to SU(2)A×SU(2)B

such that the spinor representation becomes 4 → (2,1) ⊕ (1,2). We will use indices ȧ for

SU(2)A and a for SU(2)B . Note that a different breaking is used for the operators on R
2

and will be described below in appendix C.

Under this breaking the supergroup generators




J β
α + 1

2
δβ
αD Pαβ̇ QB

α

−K α̇β −J̄ α̇
β̇
− 1

2
δα̇
β̇
D −S̄α̇B

Sβ
A Q̄β̇A RB

A


 (B.1)

are decomposed as




J β
α + 1

2
δβ
αD Pαβ̇ Qb

α Q̇αḃ

−K α̇β −J̄ α̇
β̇
− 1

2
δα̇
β̇
D −S̄α̇b − ˙̄Sα̇

ḃ

Sβ
a Q̄β̇a Rb

a + 1
2
δb
aḊ Ṗaḃ

−Ṡβȧ − ˙̄Qȧ
β̇

−K̇ ȧb −Ṙȧ
ḃ
− 1

2
δȧ
ḃ
Ḋ




(B.2)

This decomposition of the PSU(2, 2|4) algebra into SU(2)L×SU(2)R×SU(2)A×SU(2)B
is realized in a very simple way using the osclillator picture of [57]. One starts with two

pairs of bosonic oscillators (α, α̇ = 1, 2)

[
aα, a†β

]
= δα

β ,
[
bα̇, b†

β̇

]
= δα̇

β̇
, (B.3)
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and four fermionic oscillators (A = 1, 2, 3, 4)

{
cA, c†B

}
= δA

B . (B.4)

Then one rewrites the fermionic generators in terms of the two pairs ca and dȧ (with

a, ȧ = 1, 2 and standard anti-commutators)

cA = ( c1, c2, d†
1̇
, d†

2̇
) c†A = ( c†1, c

†
2, d

1̇, d2̇ ) (B.5)

The bosonic generators of the algebra are made either of two bosonic oscillators (giving

the conformal part) or two fermionic ones (giving the R-symmetry part)

Jα
β = a†β a

α −
1

2
δα
β a

†
γ a

γ J̄ α̇
β̇ = b†

β̇
bα̇ −

1

2
δα̇
β̇
b†γ̇ b

γ̇

Pαβ̇ = a†α b
†

β̇
Kαβ̇ = aα bβ̇ D = 1 +

1

2
(a†γa

γ + b†γ̇b
γ̇)

Ra
b = c†b c

a −
1

2
δa
b c

†
c c

c Ṙȧ
ḃ = d†

ḃ
dȧ −

1

2
δȧ
ḃ
d†ċ d

ċ

Ṗaḃ = c†a d
†

ḃ
K̇aḃ = ca dḃ Ḋ = −1 +

1

2
(c†cc

c + d†ċd
ċ)

(B.6)

The fermionic generators of the superalgebra can then be written as

Qa
α = a†α c

a , Q̄aα̇ = b†α̇ c
†
a , Sα

a = c†a a
α , S̄α̇a = bα̇ ca ,

Q̇ȧα = a†α d
†
ȧ ,

˙̄Qȧ
α̇ = −b†α̇ d

ȧ , Ṡαȧ = −aα dȧ , ˙̄Sα̇
ȧ = d†ȧ b

α̇ .
(B.7)

Some of their commutators are
{
Qa

α, Q̄bα̇

}
= δa

bPαα̇,
{
Q̇αȧ,

˙̄Qḃ
α̇

}
= −δḃ

ȧPαα̇ ,
{
Sα

a , S̄
α̇b
}

= δb
aK

αα̇ ,
{
Ṡαȧ, ˙̄Sα̇

ḃ

}
= −δȧ

ḃ
Kαα̇ ,

[
Kαα̇, Qa

β

]
= δα

β S̄
α̇a ,

[
Kαα̇, ˙̄Qȧ

β̇

]
= δα̇

β̇
Ṡαȧ ,

[
Pαα̇, S

β
a

]
= −δβ

αQ̄α̇a ,
[
Pαα̇,

˙̄Sβ̇
ȧ

]
= −δβ̇

α̇Q̇αȧ ,

{
Qa

α, S
β
b

}
= δa

b J
β
α + δβ

αR
a
b +

1

2
δa
b δ

β
α(D + Ḋ) ,

{
Qa

α, Ṡ
βḃ
}

= δβ
αK̇

ḃa ,

{
Q̇ȧα, Ṡ

βḃ
}

= −δḃ
ȧJ

β
α + δβ

αṘ
ḃ
ȧ −

1

2
δḃ
ȧδ

β
α(D − Ḋ) ,

{
Q̇ȧα, S

β
b

}
= δβ

αṖbȧ ,

{
Q̄α̇a, S̄

β̇b
}

= −δb
aJ̄

β̇
α̇ + δβ̇

α̇R
b
a −

1

2
δb
aδ

β̇
α̇(D − Ḋ) ,

{
Q̄α̇a,

˙̄Sβ̇

ḃ

}
= −δβ̇

α̇Ṗaḃ ,

{ ˙̄Qȧ
α̇,

˙̄Sβ̇

ḃ

}
= −δȧ

ḃ
J̄ β̇

α̇ − δβ̇
α̇Ṙ

ȧ
ḃ
−

1

2
δȧ
ḃ
δβ̇
α̇(D + Ḋ) ,

{ ˙̄Qȧ
α̇, S̄

β̇b
}

= −δβ̇
α̇K̇

ȧb .

(B.8)

The construction of the field C in section 2 involves an identification between the

conformal group and the R-symmetry group. In particular this gives a canonical identifi-

cation between the undotted indices of SU(2)L and SU(2)B and between the dotted ones

of SU(2)R and SU(2)A. This allows one to define the traced supersymmetry generators

Q = Qα
α = a†α c

α , ˙̄Q = ˙̄Qα̇
α̇ = b†α̇ d

α̇ ,

S = Sα
α = c†α a

α , ˙̄S = ˙̄Sα̇
α̇ = d†α̇ b

α̇ .
(B.9)
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These generators are invariant under the diagonal sums of the SU(2) factors, but not over

the full sum of the conformal group and R-symmetry group. The two generators that are

invariant under that identification require fully tracing over the off-diagonal blocks in (B.2).

The resulting two supercharges which anti-commute with each-other are

Q+ = Q− ˙̄S , Q− = ˙̄Q− S . (B.10)

Under this identification it is also possible to assign space-time indices to the R-

symmetry generators and to the remaining supercharges. Using the usual γ matrices (now

with a, ȧ indices) we have

Ṗµ = Ṗaȧ (σ̄µ)ȧa = R5µ + iR6µ , K̇µ = K̇ ȧa (σµ)aȧ = R5µ − iR6µ ,

Rµν =
1

2

(
Ra

b (σµν)a
b − Ṙȧ

ḃ (σ̄µν)ḃȧ

)
, Ḋ = iR56 .

(B.11)

For the supercharges we take the combinations

Qµ = (σ̄µ)ȧα(Q̄αȧ − Q̇αȧ) Sµ = (σµ)aα̇(Ṡα̇a − S̄α̇a)

Qµν =
1

2

(
(Sa

α −Qa
α)(σµν) α

a − ( ˙̄Qα̇
ȧ − ˙̄Sα̇

ȧ )(σ̄µν) ȧ
α̇

)

QD =
1

2

(
Sa

a −Qa
a + ˙̄Qȧ

ȧ −
˙̄Sȧ
ȧ

)
(B.12)

Acting on them with Q± gives the twisted generators (2.15) which are the sum of the

conformal generators (A.9) and the R-symmetries (B.11)

{
Q±, Qµ

}
= P̂µ = Pµ + Ṗµ ,

{
Q±, Qµν

}
= Ĵµν = Jµν +Rµν ,{

Q±, Sµ

}
= K̂µ = Kµ + K̇µ ,

{
Q±, QD

}
= D̂ = D + Ḋ .

(B.13)

Under the action of these generators the field C transforms as a dimension-zero

scalar (2.16).

We would like to comment that after choosing the scalar field C (2.1), it is natural to

arrange the five other scalar fields as [22]

V µ = iΦµ + xµ(Φ6 − iΦ5) ,

B = Φ6 − iΦ5 .
(B.14)

The full twisted conformal group (2.15) as well as the twisted supercharges (B.12) give

many more relations among the correlation functions of operators made of C and these

fields. For example the twisted conformal generators acting on V µ give

P̂µ V
ν = ∂µV

ν ,

Ĵµν V
ρ = (xµ∂ν − xν∂µ)V ρ + δρ

µVν − δρ
νVµ ,

D̂ V µ = xν∂νV
µ + V µ ,

K̂µ V
ν = (2xµx

ν∂ν + 2xµ − x2∂µ)V ν − 2xµV
ν + δν

µ(2xρV
ρ − C) .

(B.15)
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and the action on B is

P̂µB = ∂µB ,

Ĵµν B = (xµ∂ν − xν∂µ)B ,

D̂ B = xµ∂µB + 2B ,

K̂µB = (2xµx
ν∂ν + 4xµ − x2∂µ)B − 2Vµ .

(B.16)

We will not explore further the consequences of these relations here.

C Symmetry breaking for example II

The construction of the field C on R
2 involves choosing three of the real scalars, so it

explicitly breaks the R-symmetry group SU(4) → SU(2)A′ × SU(2)B′ . Unlike the breaking

in appendix B, here the breaking is such that the 4 of SU(4) becomes the (2, 2) of SU(2)A′×

SU(2)B′ . Now the supercharges will carry indices of both groups, a dotted one for SU(2)A′

and an undotted one for SU(2)B′ .

This breaking of SU(4) → SU(2)A′ × SU(2)B′ is very similar to that required for the

study of the supersymmetric Wilson loops of [48, 53] and much of this appendix is copied

from appendix A of [53].

The R-symmetry generators decompose under SU(4) → SU(2)A′ × SU(2)B′ as 15 →

(3,1) + (1,3) + (3,3). This can be explicitly written as

RA
B → Rȧa

ḃb
=

1

2
δa
b Ṫ

ȧ
ḃ
+

1

2
δȧ
ḃ
T a

b +
1

2
M ȧa

ḃb
(C.1)

where Ṫ ȧ
ḃ
and T a

b are respectively the SU(2)A′ and SU(2)B′ generators, and the 9 generators

in the (3,3) are given by M ȧa
ḃb

, which is traceless in each pair of indices

δḃ
ȧM

ȧa
ḃb

= δb
aM

ȧa
ḃb

= 0 . (C.2)

The commutation relations of the supercharges written in SU(2)A′ × SU(2)B′ nota-

tion are {
Qȧa

α , Q̄α̇ḃb

}
= δȧ

ḃ
δa
bPαα̇ ,

{
Sα

ȧa, S̄
α̇ḃb
}

= δḃ
ȧδ

b
aK

αα̇ ,
[
Kαα̇, Qȧa

β

]
= δα

β S̄
α̇ȧa ,

[
Kαα̇, Q̄β̇ȧa

]
= δα̇

β̇
Sα

ȧa ,

[
Pαα̇, S

β
ȧa

]
= δβ

αQ̄α̇ȧa ,
[
Pαα̇, S̄

β̇ȧa
]

= δβ̇
α̇Q

ȧa
α ,

{
Qȧa

α , S
β

ḃb

}
= δȧ

ḃ
δa
bJ

β
α +

1

2
δβ
α

(
δa
b Ṫ

ȧ
ḃ
+ δȧ

ḃ
T a

b +M ȧa
ḃb

+ δȧ
ḃ
δa
bD
)
,

{
Q̄α̇ȧa, S̄

β̇ḃb
}

= δḃ
ȧδ

b
aJ̄

β̇
α̇ −

1

2
δβ̇
α̇

(
δb
aṪ

ḃ
ȧ + δḃ

ȧT
b
a +M ḃb

ȧa − δḃ
ȧδ

b
aD
)
.

(C.3)

In section 3 we use also the R-symmetry generators with SO(6) vector indices Rij . It is

useful therefore to identify them, for i = 1, 2, 3, with the rotations Ṫ ȧ
ḃ
. This is done through

Rij = −
1

2
(ρij)

ȧ
ḃ
Ṫ ḃ

ȧ , Ṫ ȧ
ḃ
=

1

2
(ρij)ȧ

ḃ
Rij , (ρij)

ȧ
ḃ
= i εijk(τ

k)ȧ
ḃ
. (C.4)

The commutators are
[
Ṫ ȧ

ḃ
, Ṫ ċ

ḋ

]
= −δȧ

ḋ
Ṫ ċ

ḃ
+ δċ

ḃ
Ṫ ȧ

ḋ
⇔

[
Rij, Rkl

]
= δikRjl − δjkRil + δilRkj − δjlRki , (C.5)

like in (A.10).
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C.1 Action of SL(2,R) × SL(2,R) × SU(2)

All operators in the plane transform in representations of the rigid conformal group

SL(2,C) ≃ SL(2,R) × SL(2,R). The field Z (3.2) as well as Y and W (3.32) carry also

SU(2)A′ indices and transform under this group. In section 3.3 we discussed the action of

these generators, which we elaborate on here.

We write the holomorphic, anti-holomorphic and SU(2)A′ algebras in terms of raising

and lowering operators

L1 =
1

2
(P1 − iP2) , L0 =

1

2
(D − iJ12) , L−1 =

1

2
(K1 + iK2) , (C.6)

L̄1 =
1

2
(P1 + iP2) , L̄0 =

1

2
(D + iJ12) , L̄−1 =

1

2
(K1 − iK2) , (C.7)

R+ = −i(R23 + iR31) , R0 = iR12 , R− = i(R23 − iR31) , (C.8)

The holomorpic operators act on the fields by

L1 Z = ∂wZ , L0 Z = w∂wZ +
1

2
Z , L−1 Z = w2 ∂wZ + wZ ,

L1 Y = ∂wY , L0 Y = w∂wY +
1

2
Y , L−1 Y = w2 ∂wY + wY ,

L1W = ∂wW , L0W = w∂wW +
1

2
W , L−1W = w2 ∂wW +wW .

(C.9)

They all therefore transforms as a weight 1/2 primary field of this group. This is clearly

the same behavior as for any of the scalar fields, since there is no explicit w dependence in

the definitions of Z, Y and W

The action of the anti-holomorphic generators is more complicated

L̄1 Z = ∂w̄Z − 2Y , L̄0 Z = w̄ ∂w̄Z +
1

2
Z − 2w̄Y ,

L̄−1 Z = w̄2 ∂w̄Z + w̄Z − 2w̄2Y ,

L̄1 Y = ∂w̄Y −W , L̄0 Y = w̄ ∂w̄Y +
1

2
Y − w̄W ,

L̄−1 Y = w̄2 ∂w̄Y + w̄Y − w̄2W ,

L̄1W = ∂w̄W , L̄0W = w̄ ∂w̄W +
1

2
W ,

L̄−1W = w̄2 ∂w̄Z + w̄W .

(C.10)

likewise for SU(2)A′

R+ Z = 2Y , R0 Z = 2w̄Y − Z , R− Z = 2w̄2Y − 2w̄Z ,

R+ Y = W , R0 Y = w̄W , R− Y = w̄2W − Z ,

R+W = 0 , R0W = W , R−W = 2w̄W − 2Y ,

(C.11)

and

The linear combination

L̇1 = L̄1 +R+ , L̇0 = L̄0 +R0 , L̇−1 = L̄−1 +R− . (C.12)
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Has a relatively simple action on the fields

L̇1 Z = ∂w̄Z , L̇0 Z = w̄ ∂w̄Z −
1

2
Z , L̇−1 Z = w̄2 ∂w̄Z − w̄Z , (C.13)

L̇1 Y = ∂w̄Y , L̇0 Y = w̄ ∂w̄Y +
1

2
Y , L̇−1 Y = w̄2 ∂w̄Y + w̄Y − Z ,

L̇1W = ∂w̄W , L̇0W = w̄ ∂w̄W +
3

2
W , L̇−1W = w̄2 ∂w̄W + 3w̄W − 2Y .

Z therefore transforms as a weight −1/2 field of this twisted anti-holomorphic SL(2,R).

Y has weight 1/2 and W has weight 3/2, but they are not primaries, as can be seen from

the additional term in the action of L̇−1.

A different combination of generators appears as the anti-commutator of the super-

charges which annihilate Z and the other supercharges. Those are

L̂1 = L̄1 +
1

2
R+ , L̂0 = L̄0 +

1

2
R0 , L̂−1 = L̄−1 +

1

2
R− . (C.14)

They act on the fields by

L̂1 Z = ∂w̄Z − Y , L̂0 Z = w̄ ∂w̄Z − w̄Y ,

L̂−1 Z = w̄2 ∂w̄Z − w̄2Y ,

L̂1 Y = ∂w̄Y −
1

2
W , L̂0 Y = w̄ ∂w̄Y +

1

2
Y −

1

2
w̄W ,

L̂−1 Y = w̄2 ∂w̄Y + w̄Y −
1

2
w̄2W −

1

2
Z ,

L̂1W = ∂w̄W , L̂0W = w̄ ∂w̄W +W ,

L̂−1W = w̄2 ∂w̄W + 2w̄W − Y .

(C.15)

These generators indeed arise as the anti-commutators

{
Q+

a , iQ
1̇a

2 + S̄1̇2̇a
}

= 2
(
J2

2 + J̄ 1̇
1̇
+D

)
+ Ṫ 1̇

1̇
− Ṫ 2̇

2̇
= 2(D + iJ12 + iR12) = 4L̂0 ,

{
Q+

a ,−iQ
2̇a

2

}
= −2iP21̇ − Ṫ 2̇

1̇
= P1 + iP2 − i(R23 + iR31) = 2L̂1 ,

{
Q+

a ,−S̄
1̇1̇a
}

= 2iK 1̇2 + Ṫ 1̇
2̇

= K1 − iK2 + i(R23 − iR31) = 2L̂−1 . (C.16)

These expressions allow one to derive relations among correlation functions of operators

made out of Z, Y and W as discussed at the end of section 3.3.

D Local operators on S2

As was mentioned in section 3, there is also a natural definition for a scalar field coupling

to three scalars on S2. At the point xi ∈ S2 consider the following combination of the

three real scalar fields Φ1, Φ2 and Φ3 (3.5)

Zi = (δij − xixj)Φj + iεijkx
jΦk , (D.1)

By virtue of the superscript, Zi is a three-dimensional vector. But due to the identities

xi Zi = 0 , εijk x
j Zk = −iZi , (D.2)
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the three different components are related by a phase.

To deal with the ambiguity it is convenient to use complex coordinates on S2, through

the stereographic projection

xi =
1

1 + ww̄
(w + w̄, −i(w − w̄), 1 − ww̄) . (D.3)

With this

Zi = ai āj Φj , ai =
1

1 +ww̄

(
−i(1 − w2), 1 + w2, 2iw

)
. (D.4)

So the index i on Z is related to the holomorphic coordinate w, and we can eliminate it

by defining

Z =
1

1 + ww̄

(
i(1 − w̄2)Φ1 + (1 + w̄2)Φ2 − 2iw̄Φ3

)
. (D.5)

This is exactly the same as (3.2), apart for a factor of (1 + ww̄) due to the conformal

transformation of the fields of dimension one.

Y and W (3.32) can also be defined as

2Y = −i(x1 − ix2)(Φ1 + iΦ2) − (1 + x3)Φ3 ,

2W = (1 + x3)(Φ2 − iΦ1) .
(D.6)

D.1 Supersymmetry

By use of the stereographic projection, the operators made of these fields are analogous

to those on the plane and any number of operators made of Z (D.1) on the sphere will

therefore share four supercharges.

For completeness we perform the supersymmetry analysis also in this case. The su-

persymmetry variation of Z gives

δZ ∝ āiρi
(
ǫ0 + xjγjǫ1

)
. (D.7)

Expressing āi and xj in terms of w and w̄ (or alternatively working directly with the

expression (D.1)) one finds that the variation vanishes for arbitrary positions if

ρ12ǫ0 + iγ3ǫ1 = 0 , ρ23ǫ0 + iγ1ǫ1 = 0 , ρ31ǫ0 + iγ2ǫ1 = 0 . (D.8)

Eliminating ǫ0, we find the equations

γ12ǫ1 + ρ12ǫ1 = 0 , γ23ǫ1 + ρ23ǫ1 = 0 , γ31ǫ1 + ρ31ǫ1 = 0 . (D.9)

This is the same as the condition for Wilson loops on S2, equation (2.23) in [53], up to an

overall sign. This means that there are solutions to these equations just like for the Wilson

loops, but the combined system of loops and local operators is not supersymmetric.

To see exactly which supercharges annihilate our operators, consider again the breaking

of SU(4) → SU(2)A′ × SU(2)B′ detailed in appendix C. The combinations ρij act as

Pauli matrices of SU(2)A′ . Likewise γij act as Pauli matrices on the chiral and anti-chiral

components of the spinors. For both chiralities of ǫ1, which we label ǫ±1 equation (D.9) reads

(τ i
L/R + τ i

A)ǫ±1 = 0 , (D.10)
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which means that ǫ±1 is a singlet under the diagonal group SU(2)L/R +SU(2)A′ . Explicitly,

using indices ȧ for SU(2)A′ and a for SU(2)B′ the solutions are given by the two independent

two-component spinors ǫ+ a and ǫ−a as

ǫ+ ȧa
1 α = (δ2αδ

ȧ
1̇
− δ1αδ

ȧ
2̇
)ǫ+ a = i(τ2)

ȧ
αǫ

+ a , ǫ−1 α̇ȧa = (δ2̇α̇δ
1̇
ȧ − δ1̇α̇δ

2̇
ȧ)ǫ

−
a = εα̇ȧǫ

−
a . (D.11)

One then solves for ǫ0 using (D.8). Note that since these expressions have only a single

γi matrix, they relate the ǫ0 and ǫ1 of opposite chiralities

ǫ− α̇ȧa
0 = i(δα̇

1̇
δȧ
2̇
− δα̇

2̇
δȧ
1̇
)ǫ+ a = iεα̇ȧǫ+ a , ǫ+α

0 ȧa = i(δα
1 δ

2̇
ȧ − δα

2 δ
1̇
ȧ)ǫ

−
a = −(τ2)

α
ȧǫ

−
a . (D.12)

Using all this (and remembering the signs in (3.9)) we can write the four supersymmetry

generators as

Qa = Q̄1̇2̇a − Q̄2̇1̇a − iS2
1̇a

+ iS1
2̇a
, Q̇a = Q 2̇a

1 −Q 1̇a
2 + iS̄2̇1̇a − iS̄1̇2̇a . (D.13)

The anti-commutator of the two gives

{
Qa , Q̇

b
}

= δb
a(P11̇ + P22̇ +K 1̇1 +K 2̇2) + 2iT b

a = δb
a(P4 +K4) + 2iT b

a . (D.14)

The trace is then the combination P4 +K4 which maps the sphere at x4 = 0 to itself and

the second term is the SU(2)B′ rotations, both are symmetries of all our operators Z on S2.

We can of course also consider all the other symmetry generators and their action

on these fields. Again there are certain combinations of SL(2,R) and SU(2) generators

with simple actions on these fields. These are completely analogous to what is detailed in

section 3.3 and appendix C.1 and we do not repeat it.
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